A Three-Stage Neural Model for Attribute Based Classification and Indexing of Fly Ashes
نویسندگان
چکیده
The primary objective of this work is to categorize the available fly ashes in different parts of the world into distinct groups based on its compos i t iona l a ttributes. Kohonen’s selforganizing feature map and radial basis function networks are utilized for the classification of fly ashes in terms of its chemical parameters. The basic procedure of the methodology consists of three stages: (1) apply self –organizing neural net and delineate distinct groups of fly ashes and identify the group sensitive attributes; (2) find mean values of sensitive attributes of the elicited groups and augment them as start-up prototypes for k-means algorithm and find the refined centroids of these groups; (3) incorporate the centroids in a two layer radial basis function network and refine the delineation of the groups and develop an indexing equation using the weights of the stabilized network. Further, to demonstrate the utility of this classification scheme, the so formed groups were correlated with their performance in High Volume Fly Ash Concrete System [HVFAC]. The categorization was found to be excellent and compares well with Canadian S tandard Association’s [CSA A 3000] classification scheme.
منابع مشابه
Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کامل